

College of Arts, Science & Commerce

RISE WITH EDUCATION Sion (West), Mumbai – 400022. (Autonomous)

> Faculty: Science Program: B.Sc.

Subject: BIOTECHNOLOGY

Academic Year: 2018 – 2019

S.Y.B.Sc.

Credit Based Semester and Grading Syllabi approved by Board of Studies in Biotechnology to be brought into effect from June 2018.

PREAMBLE

Biotechnology, broadly defined, includes any technique that uses living organisms, or parts of such organisms, to make or modify products, to improve plants or animals, or to develop microorganisms for specific use. The interdisciplinary nature of biotechnology integrates living systems including animal, plant and microbes and their studies from molecular biology to cell biology, from biochemistry to biophysics, from genetic engineering to stem cell research, from bioinformatics to genomics-proteomics, from environmental biology to biodiversity, from microbiology to bioprocess engineering, from bioremediation to material transformation and so on.

Biotechnology is the science of today and tomorrow. It has applications in all major service sectors. i.e. health, agriculture, industry, environment etc. Biotechnology as an application science has taken firm footing in many countries, abroad where a number of transgenic crops, genetically modified food and recombinant therapeutic molecules for human and animal health are available in the market. Biotechnology as a science of service to human society is yet to make inroads in India

With the advent of World Wide Web in the early nineties and its subsequent growth, the latest research trends have become accessible from drawing rooms across the globe. This acted as a positive feedback mechanism in increasing the pace of research in all fields including Chemical Engineering and Bio-technology. This was the motivation for an in depth analysis of what is actually required for today's technology. It is also important to take advantage of the freely available software to enhance the quality and quantity of material that can be covered in the class room.

This restructured syllabus is therefore intended to combine the principles of physical, chemical and biological sciences along with developing advanced technology. The undergraduate curricula is prepared to impart primarily basic knowledge of the respective subject from all possible aspects. In addition, students will be trained to apply this knowledge particularly in day-to-day applications of biotechnology and hence get a flavor of research

	Semester I				
Course Code	Course Type	Course Title	Credits	Lectures/week	
SIUSBT31	Core Subject	Biophysics	2	3	
SIUSBT32	Core Subject	Applied Chemistry-I	2	3	
SIUSBT33	Core Subject	Immunology	2	3	
SIUSBT34	Core Subject	Cell biology and Cytogenetics	2	3	
SIUSBT35	Core Subject	Molecular Biology	2	3	
SIUSBT36	Core Subject	Bioprocess Technology	2	3	
SIUSBT37	General Elective	Research Methodology	2	3	
SIUSBTP38, SIUSBTP39, SIUSBTP40	Core subject Practical	Practical of SIUSBT31, SIUSBT32, SIUSBT33, SIUSBT34, SIUSBT35 and SIUSBT36	6	18	
		Semester II			
Course Code	Course Type	Course Title	Credits	Lectures/week	
SIUSBT41	Core Subject	Biochemistry	2	3	
SIUSBT42	Core Subject	Applied Chemistry-II	2	3	
SIUSBT43	Core Subject	Medical Microbiology	2	3	
SIUSBT44	Core Subject	Environmental Biotechnology	2	3	
SIUSBT45	Core Subject	Biostatistics and Bioinformatics	2	3	
SIUSBT46	Core Subject	Molecular Diagnostics	2	3	
SIUSBT47	General Elective	Entrepreneurship Development	2	3	
SIUSBTP48, SIUSBTP49, SIUSBTP50	Core subject Practical	Practical of SIUSBT41, SIUSBT42, SIUSBT43, SIUSBT44, SIUSBT45 and SIUSBT46	6	18	

SEMESTER III

COURSE CODE	TITLE	CREDITS	LECTURES
SIUSBT31	Biophysics		
Course Objective	To have a firm foundation in the fundamentals and application theories and to develop an understanding of the different aspectits its applications in the field of biology.		1 .
Unit I Optics and Electromagnetic Radiations	 Introduction to Optics and Lasers: Optics: Properties of light: Reflection, Refraction, Dispersion and Interference; Lasers: Properties of lasers, Stimulated Emissions, Laser Action, Applications of Laser; Electromagnetic Radiation: Introduction to Electromagnetic Radiation; Spectroscopy: Types and Properties of Spectra; Basic Laws of Light Absorption. Spectrophotometer: Principle; Instrumentation and Applications; UV-Vis Spectrophotometer, Single and Dual-beam Spectrophotometer Microscopy: Types of Microscopy: Electron Optics; Electron Microscopy: Preparation of Specimens, SEM TEM, Immuno-electron Microscopy, Fluorescence Microscopy and Confocal Microscopy Heat: Concept of Temperature; Modes of Heat Transfer; Measuring Temperature; Platinum Resistance Thermometer, Thermocouple and Thermistors Sound: Types of Sound Waves - Audible, Ultrasonic and Infrasonic Waves; Doppler Effect; Applications of Ultrasonic Waves Magnetism: Magnetic Field; Magnetism of Earth; Para- 	2	15
Unit III Electrophoresis	 magnetism, Diamagnetism, Ferromagnetism. Nuclear Magnetism and Biomagnetism Fluid Dynamics: Viscosity: Definition Flow of Liquids through Capillaries; Stokes' Law; Terminal Velocity. Determination of 'η' by Falling Sphere Method; Viscosity Estimation by Oswald's Viscometer. Surface Tension: Definition - Surface Tension and Surface Energy; Capillary Action; Angle of Contact; Wettability; Temperature Dependence of Surface Tension. Applications in Biology. Migration of Ions in an applied electric field; Factors affecting Electrophoretic Mobility; Moving Boundary Electrophoresis; Principle of Electrophoresis; Supporting Matrix; Paper electrophoresis; AGE; Native and SDS PAGE (reducing and non-reducing, continuous and discontinuous); IEF and 2D PAGE. Staining and Detection methods; Gel-Documentation. Applications in Biology. 		15

COURSE CODE	TITLE	CREDITS	LECTURES
SIUSBT32	Applied Chemistry-I		
Course Objectives	To acquaint the students with fundamentals and applications understand the role of green chemistry and its application in	U	ompounds and
Unit I	Introduction to Types of Organic Reactions:		15
Organic Chemistry	Addition, Elimination and Substitution Reactions. Essential and Non-essential Elements in Biological Systems. Role of Metal Ions in Biological Systems. Metal Coordination in Biological Systems: Enzymes, Apoenzymes and Coenzymes. Biological Role of Metalloenzymes wrt Myoglobins, Haemoglobin. Biological Role of Carboxypeptidases, Catalases and Peroxidases. Structure and Function: Dioxygen Binding, Transfer and Utilization; Metal Complexes in Medicines.		
Unit II Synthesis of Organic	Synthesis of Organic Compounds: Criteria for Ideal Synthesis; Selectivity and Yield. Linear	2	15
Compounds	and Convergent Synthesis and Multicomponent Reactions. Microwave Assisted Organic Ultrasound in Synthesis and Polymer supported Synthesis. Retrosynthesis.		
Unit III	Green Chemistry and Synthesis:		15
Green Chemistry and Synthesis	Introduction to Green Chemistry; Need and Relevance of Green Chemistry; Principles of Green Chemistry. Green Synthesis in Industry: Green Materials, Green Reagents, Green Solvents and Green Catalysts.		

COURSE CODE	TITLE	CREDITS	LECTURES
SIUSBT33	Immunology		
Course Objectives	To understand the role of complements in immune response receptors involved in immune reaction	e and different	nt immune cell
	To introduce them to the principles underlying various imm	une-techniqu	es
Unit I	Complement System- Classical, Alternate and Lectin; Regulation and Biological Effects of Complement System; Deficiencies of Complement System		15
Effectors of Immune Response	MHC Classes – General Organization and Inheritance; Structures and Peptide Interactions; Class I and II Diversity and Polymorphism; Antigen Presentation - Endocytic and Exocytic Pathways; MHC Restriction.		
Unit II Cell Receptors	T-cell Receptor Complex: Structure, mechanism, T cell co-receptor complex B-cell Receptor: Structure, mechanism, B cell co-receptor complex Toll-like receptors (TLRs) B-T cell interaction (B-T cell cooperation).	2	15
	Introduce cell cytotoxic responses as the effector mechanism		
Unit III	PrecipitationReactions:Immunoprecipitation,Immunoelectrophoresis, CIEP, Rocket Electrophoresis and 2-D Immunoelectrophoresis.		15
Immuno- Techniques	Agglutination Reactions:		
	Passive, Reverse Passive, Agglutination Inhibition. Coomb's Test; Complement Fixation Tests, RIA, ELISA, ELISPOT, Chemiluminescence, Western Blot, Immunofluorescence, Flow Cytometry. Alternatives to Antigen-Antibody Reactions.		

COURSE CODE	TITLE	CREDITS	LECTURES		
SIUSBT34	Cell Biology and Cytogenetics				
Course Objectives	To develop an understanding of the cytoskeleton and cell membrane To familiarize the students with structure of chromosomes, types of chromosomal aberrations as well as sex determination and sex linkage				
Unit I Cytoskeleton	Cytoskeleton: Overview of the MajorCytoskeleton.Microtubules: Structure and Composition.MAPs: Functions- Role in Mitosis, Structural Support andCytoskeleton Intracellular Motility.Motor Proteins: Kinesins, Dynein; MTOCs.Dynamic Properties of Microtubules. Microtubules in Ciliaand Flagella.Microfilaments: Structure, Composition Assembly andDisassembly.Motor Protein: Myosin. Muscle Contractility: SlidingFilament Model. Actin Binding Proteins: Examples of Non- Muscle Motility.		15		
	Intermediate Filaments: Structure, Composition; Assembly and Disassembly, Types and Functions.				
Unit II Cell Membrane	Cell Membrane: Uptake of Nutrients by Prokaryotic Cells; Cell Permeability. Principles of Membrane Transport- Transporters and Channels; Active Transport, Passive transport; Types of Transporters, Types of ATP Driven Pumps - Na+ K+ Pump. Cell Junctions;Cell Adhesion and Extracellular Material; Microvilli; Tight Junctions, Gap Junctions; Cell Coat and Cell Recognition. Cellular Interactions.	2	15		
Unit III Cytogenetics	 Cytogenetics: Structure of Chromosome - Heterochromatin, Euchromatin, Polytene Chromosomes, Cytogenetic staining Variation in Chromosomal Structure and Number: Deletion, Duplication, Inversion, Translocation, Euploidy, Aneuploidy, Polyploidy and Syndromes-Klinefelter, Turner, Cri-du-Chat, Trisomy -21, Trisomy-18 and Trisomy-13. Sex Determination and Sex Linkage: Mechanisms of Sex Determination (XX-XY, ZZ-ZW, XX-XO), Dosage Compensation and Barr Body. Genetic Linkage, Crossing Over and Chromosomal Mapping: Tetrad Analysis; Two-point Cross; Three- point Cross; Pedigree Analysis. 		15		

COURSE CODE	TITLE	CREDITS	LECTURES
SIUSBT35	Molecular Biology		
Course Objectives	To have an insight into mechanism of gene expression and reg transcription and translation in prokaryotes and eukaryotes	gulation at the	level of
Unit I	Gene Expression- an Overview.		15
Gene Expression- Transcription	 Transcription Process in Prokaryotes: RNA Synthesis; Promoters and Enhancers; Initiation of Transcription at Promoters; Elongation and Termination of an RNA Chain. Transcription in Eukaryotes: Eukaryotic RNA Polymerases; Eukaryotic Promoters; Transcription of Protein Coding Genes by RNA Polymerase; Eukaryotic mRNAs; Transcription of other 		
	Spliceosomes; RNA editing.		
Unit II	Nature of Genetic Code.		15
Gene Expression- Translation	 Wobble Hypothesis. Translation: Process of Protein Synthesis (Initiation, Elongation, Translocation, Termination); Post Translation Modifications. 	2	
	Protein sorting.		
Unit III Regulation of Gene Expression	In Bacteria: <i>lac</i> Operon of E. coli; <i>trp</i> Operon of E. coli. In Viruses: Lytic / Lysogenic Regulation In Eukaryotes: Operons in Eukaryotes; Control of Transcriptional Initiation; Gene Silencing and Genomic Imprinting; Post- Transcriptional Control; RNA Interference.		15

COURSE CODE	TITLE	CREDITS	LECTURES
SIUSBT36	Bioprocess Technology		
Course Objectives	To understand the basics skills applied in fermentation technology a advanced studies in bioprocess technology.	and build a four	ndation for more
	To develop skills associated with screening of industrially important	t strains.	
	To understand principles underlying design of fermenter and ferme	ntation process.	
Unit I Microorganisms in Industrial Processes	Types of Microorganisms used in Industrial Processes:Bacteria, Actinomycetes, Fungi and Algae.Screening and maintenance of strains:Primary Screening and Secondary Screening; Cultivation;Preservation of Industrially Important Microbial Strains.		15
Unit II Fermenters	Design of a fermenter:Stirred Tank Fermenter- Basic Design; Parts of a TypicalIndustrial Fermentor.Fermentation Media:Components; Design and Optimization.Sterilization:Sterilization of Fermenter and Fermentation Media.Process Parameters:pH, Temperature, Aeration, Agitation, Foam, etc.Types of Fermentation:Surface and Submerged; Batch and Continuous, Aerobicand Anaerobic. Product Isolation and Purification.	2	15
Unit III Fermentation Processes	Study of representative fermentation processes:Penicillin, Ethanol, Beer, Wine, VinegarAssay of Industrial Products:Chemical and Biological; Types and SubtypesAdvantages and Disadvantages.		15

COURSE CODE	TITLE	CREDITS	LECTURES			
SIUSBT37	Research Methodology					
Course Objectives	research methodology and identify a research problem.	To develop research aptitude, logical thinking and reasoning by understanding basic principles of research methodology and identify a research problem. To identify the overall process of designing a research study from its inception to its report				
Unit I Introduction to Research Methodology and Research Problem	Meaning of Research; Objectives of Research; Motivation in Research; Types of Research; Research Approaches; Significance of Research; Research Methods versus Methodology; Research Process; Criteria of Good Research; Problems Encountered by Researchers in India; What is a Research Problem? Selecting the Problem; Necessity of Defining the Problem; Technique Involved in Defining a Problem.		15			
Unit II Research Design and Data Collection	Meaning of Research Design; Need for Research Design; Features of a Good Design; Important Concepts Relating to Research Design; Different Research Designs; Basic Principles of Experimental Designs; Developing a Research Plan – Collection of Primary Data; Observation Method; Interview Method; Collection of Data through Questionnaires; Collection of Data through Schedules; Other Methods of Data Collection, Collection of Secondary Data, Selection of Appropriate Method for Data Collection, Case Study Method	2	15			
Unit III Scientific Communication and Report Writing	 Scientific Communication: Communication elements - verbal and non-verbal communications, principles of effective communications, oral presentations, Scientific writing, Introduction to scientific reports and writing, egg: writing reviews, papers and bibliography. Report Writing: Different Steps in Writing Report, Layout of the Research Report, Types of Reports, Mechanics of Writing a Research Report, Precautions for Writing Research Reports. Introduction to Plagiarism 		15			
Internal Evaluation	Submission of Research Report/ Project/ Case Study/ Assignment					

SEMESTER III (PRACTICAL)

COURSE CODE	TITLE	CREDITS	NOTIONAL HOURS		
SIUSBTP38	PRACTICALS based on SIUSBT31	2	30 Hrs		
	and SIUSBT32				
1. Extraction of Plasmid	DNA and Separation by Agarose Gel Ele	ctrophoresis.			
2. Determination of Puri	ity of Plasmid DNA using UV Spectropho	tometry.			
3. Study of the Structure	e and Function of an Electron Microscope				
4. Demonstration of Stru	acture and Working of a Fluorescence Mic	croscope (Stai	ned Preparation).		
5. Electrophoresis of Pro	oteins by PAGE and SDS-PAGE (Demons	stration)			
6. Purification of any TV	WO Organic Compounds by Recrystallizat	tion Selecting	Suitable Solvent.		
7. Organic Estimations:	Acetone, Amide, Benzoic Acid.				
8. Organic Preparations:	8. Organic Preparations:				
a) Acetylation of Prin	a) Acetylation of Primary Amine (Preparation of Acetanilide).				
b) Base Catalysed Al	dol Condensation (Synthesis of Dibenzal	propanone).			

COURSE CODE	TITLE	CREDITS	NOTIONAL HOURS
SIUSBTP39	PRACTICALS based on SIUSBT33 and SIUSBT34	2	30 hrs.
1. Complement Fixation	Test (CFT)- Demonstration		
2. Passive Agglutination	- RA Factor Test.		
3. Immunoelectrophores	sis.		
4. Double immunodiffus	sion (Ouchterlony method)		
5. SRID			
6. ELISA (Kit-based) - I	HEPALISA.		
7. DOT-BLOT			
8. Western Blotting - De	emonstration.		
9. Flow Cytometry – La	b Visit/Demonstration.		
10. Study of Chromosom	al Aberrations-Normal male and female a	nd Syndromes	- Trisomy 21 Trisomy 13
Trisomy 18, Klinefelt	ter and Turner, Cri-du-Chat and Philadelph	hia chromosoi	ne
11. Induction of Polyploi	dy by PDB Treatment using Suitable Plan	t Material.	
12. Study of Polytene Ch	romosomes.		
13. Mapping based on Te	trad Analysis and Three Point Cross.		
14. Pedigree Analysis- A	utosomal and Sex-Linked.		

COURSE CODE	TITLE	CREDITS	NOTIONAL HOURS				
SIUSBTP40	PRACTICALS based on SIUSBT35	2	30 hrs.				
	and SIUSBT36						
1. Study of <i>E.coli</i> Diaux	1. Study of <i>E.coli</i> Diauxic Growth Curve- (Lactose and Glucose).						
2. Comparison of Growt	h curve and selection of industrially impo	rtant strains					
3. Study of <i>lac</i> Gene Exp	pression using Blue-White Selection.						
4. Induction and screening	ng of β -galactosidase activity						
5. Screening for an Antil	biotic Producing Strain of Microorganism						
6. Estimation of Penic	illin by Chemical (Iodometric) Method	l.					
7. Estimation of Penicill	in by Biological (Bioassay) Method.						
8. Lab Scale Production	8. Lab Scale Production of Ethanol.						
9. Purification of Ethanol from Broth Culture of Saccharomyces spp. By distillation							
10. Estimation of Alcohol	from Recovered Broth by Dichromate M	ethod.					

SEMESTER IV

COURSE CODE	TITLE	CREDITS	LECTURES
SIUSBT41	Biochemistry		
Course Objectives	To gain an insight into the metabolic processes associated with catabolism of carbohydrates, amino acids, lipids and nucleotides and explain the role of energy rich molecules in metabolism.		
Unit I Carbohydrate Metabolism, ETS and Energy Rich Compounds	Carbohydrate Metabolism: Glycolytic Pathway and its Regulation, Homolactic Fermentation; Alcoholic Fermentation; Energetics of Fermentation; Citric Acid Cycle and its Regulation; Gluconeogenesis; Pentose Phosphate Pathway; Glyoxalate Pathway; Reductive TCA. (Sequence of Reactions, Regulation, Energy Yield and Metabolic Disorders of the above pathways) Electron Transport System: Electron Transport and Oxidative Phosphorylation. Inhibitors of ETS Energy Rich Compounds: ATP as Energy Currency, Structure of ATP, Hydrolysis, Other Energy Rich Compounds other than ATP like PEP, Creatine Phosphate, etc.		15
Unit II Amino Acid Metabolism	 Amino Acid Breakdown: Deamination, Transamination, Urea Cycle, Breakdown of Glucogenic and Ketogenic Amino Acids. Amino Acids as Biosynthetic Precursors: Biosynthesis of Epinephrine, Dopamine, Serotonin, GABA, Histamine, Glutathione. (Sequence of Reactions, Regulation and Metabolic Disorders of the above pathways) 	2	15
Unit III Lipid and Nucleotide Metabolism	 Lipid Metabolism: Mobilization, Transport of Fatty Acids. Beta, Alpha and Omega Oxidation of Saturated Fatty Acids; Oxidation of Unsaturated Fatty Acids; Oxidation of Odd Chain Fatty Acids. Energy Yield, Ketone Body Breakdown to Yield Energy. (Sequence of Reactions, Regulation, Energy Yield and Metabolic Disorders of the above pathways) Nucleotide Metabolism: Degradation of Purines and Pyrimidines 		15

COURSE CODE	TITLE	CREDITS	LECTURES
SIUSBT42	Applied Chemistry-II		
Course Objectives	To develop an understanding of the different aspects of analytical chemistry. To gain knowledge of natural product chemistry and related acquired skills.		
	To gain an understanding of basic concepts in polymer che	mistry and N	anomaterials
Unit I Sampling and Separation Techniques	Sampling:Importance of Sampling and Sampling techniques,Types of Sampling - Random and Non-Random Samplingof Solids, Liquids and Gases.Separation Techniques:Solvent Extraction - Partition Coefficient and Distribution		15
	 Ratio, Extraction Efficiency, Separation Factor, Role of Complexing Agents, Chelation, Ion pair Formation, Solvation, and Soxhlation. Centrifugation – Basic principles of sedimentation. Preparative: differential and density gradient, isopycnic and rate zonal gradient materials, preparation, sample application, recovery, choice of rotors. Analytical centrifuge 		
Unit II Chromatographic Techniques	Column chromatography and its types: Column chromatography: Principle, packing of column, matrix used, parts of column chromatography. Principle, working and application of Adsorption chromatography, partition chromatography, Affinity, Gel Permeation and Ion-Exchange chromatography, Applications	2	15
Unit III Polymers and Nanomaterials	Polymers:Introduction to Polymers, Types of Polymers: Monomers,Polymer, Homopolymer, Copolymer, Thermoplastics andthermosets, Addition and Condensation Polymers(Examples and Uses)Stereochemistry of PolymersBiodegradable PolymersNanomaterials:Introduction to nanomaterials,Types of nanomaterials, Forms of Nanomaterials:Nanoparticles, Nanofilms, Nanotubes and Quantum Dots,Synthesis and characterization of Nanomaterials,Applications of Nanomaterials.		15

COURSE CODE	TITLE	CREDITS	LECTURES
SIUSBT43	Medical Microbiology		
Course Objectives	To gain insight into host parasite relationship and virulence f To study the pathogenesis and epidemiology of vari microorganisms and its prophylaxis.		s caused by
Unit I Infectious Diseases	 Host Parasite Relationship: Normal Flora; Factors Affecting the Course of Infection and Disease; Mechanisms of Infection and Virulence Factors. Infection: Patterns of Infection; Types of Infections; Signs and Symptoms; Epidemiology and Epidemiological Markers. Diseases: Origin of Pathogens; Vectors; Acquisition of Infection; Koch's Postulates. 		15
Unit II Medical Microbiology- Causative Organisms-I	Skin: S. aureus, S. pyogenesRespiratory Tract Infections: M. tuberculosis, S. pneumoniae (Characteristics, Transmission, Course of Infection, Lab Diagnosis, Management of TB, Prevention and Control, Immuno and Chemoprophylaxis, DOTS and MDR).2Urinary Tract Infections: E.coli: Characteristics, Virulence, Clinical disease, and E.coli Infections. Proteus2		15
Unit III Medical Microbiology- Causative Organisms-Ii	 GI Tract Infections: Salmonella and Shigella spps. (Characteristics, Virulence - Pathogenesis and Immunity, Clinical Disease, Carriers Lab Diagnosis, Typing Prophylaxis and Treatment). Sexually Transmitted Diseases: Syphilis and Gonorrhea. Nosocomial Infections: Ps. aeruginosa 		15

COURSE CODE	TITLE	CREDITS	LECTURES
SIUSBT44	Environmental Biotechnology		
Course Objectives	To gain insight on the causes, types and control methods pollutions and bioremediation	for environme	ental
Unit I Water and Soil Pollution	 Types of Pollution Water Pollution: Causes, Types and Classification; Eutrophication; Assessment of Water Quality- Pollutant Monitoring and Control; Soil and Solid Waste Pollution: Characteristics of Wastes, Impacts of Solid waste on Health, Occupational Hazards and Control. Soil Erosion: 		15
Unit II Air Pollution and Monitoring	Concept, Causes and Effects. Air Pollution: Types; Sources; Classification of Air Pollutants; Air Pollution Monitoring and Control Green House Effect: Factors Responsible for Green House Effect; Green House Gases. Global Warming; Ozone Depletion; Kyoto Protocol; UV Radiation; Acid Rain.	2	15
UNIT III Bioremediation	Concept of Bioremediation: Microorganisms in Bioremediation, Myco-remediation and Phytoremediation. Bioremediation Technologies. Measuring Bioremediation in the Field. Bioaugmentation and Biostimulation. Monitoring the Efficacy of Bioremediation		15

COURSE CODE	TITLE	CREDITS	LECTURES
SIUSBT45	Bioinformatics and Biostatistics		
Course Objectives	To develop an understanding in basic concepts of bio sequence alignment To apply the various statistical tools for analysis of biolo		and its use in
Unit I Introduction to Computers and Biological Databases	Computer Basics: Organization of a Computer; I/O Units; Computer Memory; Processor; Binary Arithmetic; Logic Circuit; Architecture; Operating System. Internet Basics: Connecting to the Internet, E- mail, FTP, www, Difference between www and Internet. Biological Databases: Classification of Databases- Raw and Processed databases; Primary (NCBI), Secondary (PIR) and Tertiary or Composite (KEGG) databases; Structure and Sequence databases. Specialized Databases - Protein Pattern Databases; Protein Structure and Classification Databases (CATH/SCOP). Genome Information Resources: DNA Sequence Databases specialized Genomic Resources. Protein Databases based on Composition, Motifs and Patterns. Protein Str. Visualization Software.	2	15
Unit II BLAST and Sequence Alignment	 Pairwise Alignment: Identity and Similarity; Global and Local Alignment; Pairwise Database Searching. FASTA BLAST and Sequence Alignment: BLAST and its Types; Retrieving Sequence using BLAST Multiple Sequence Alignment: Goal of Multiple Sequence Alignment; Computational Complexity; Manual Methods; Simultaneous Methods; Progressive Methods; Databases of Multiple Alignment; Secondary Database Searching; Analysis Packages; MSA and phylogenetic trees. 		15
Unit III Biostatistics	Theory and Problems based on- Coefficient of Correlation and Regression Analysis; Steps in Testing Statistical Hypothesis; Parametric Tests: - Z Test-Single Mean and Two Means, t-Test- Single Mean, Paired and Unpaired; Chi- square Test.		15

COURSE CODE	TITLE	CREDITS	LECTURES
SIUSBT46	Molecular Diagnostics		
Course Objectives	To develop a learning and understanding of the basic diagnosis and gain critical thinking and analytical skills methods.		
Unit I Basics of Molecular Diagnostics	Introduction to Molecular Diagnostics: Overview of Molecular Diagnostics; History of Molecular Diagnostics; Molecular Diagnostics in post genomic era; Areas used in Molecular Diagnostics; Future prospects- Commercializing Molecular Diagnostics, Personalized medicine, Theranostic. Characterization and analysis of Nucleic-acids and Proteins: Extraction, Isolation and Detection of DNA, RNA and Proteins; Restriction Endonucleases and restriction enzyme mapping Hybridization techniques: Southern, Northern, Western Blotting technique and FISH; Markers, probes and its Clinical applications.		15
Unit II Nucleic Acid Amplification Methods	 Target amplification: PCR - General Principle; Components of a Typical PCR reaction; Experimental Design; Primer Designing; Control of PCR Contamination and Mispriming; PCR Product Clean-up and Detection. PCR Types: Reverse Transcriptase and Real Time PCR Probe amplification: Ligase Chain Reaction 	2	15
Unit III Molecular Biology based Diagnostics	 DNA Polymorphism and Identification: RFLP and Parentage Testing; RFLP and Sickle-Cell Anemia. Molecular Diagnostics for infectious diseases: Molecular testing for Neisseria, Molecular diagnosis for HIV-1; Genetic Counselling and Molecular Diagnosis: Genetic testing- Need and uses; genetic counselling. Case studies- Diagnostic testing for Cystic fibrosis; Fragile X diagnostic and Carrier testing, CML and Down Syndrome Ethical, Social and legal issues to molecular genetic testing 		15

COURSE CODE	TITLE	CREDITS	LECTURES
SIUSBT47	Entrepreneurship Development		
Course Objectives	To develop and systematically apply an entrepreneurial w identification and creation of business opportunities. To help design strategies for successful implementation plan.		
Unit I Introduction to Entrepreneurship Development and IPR	Entrepreneurship: Concept of Entrepreneur; Entrepreneurship; Need and Importance; Factors Influencing Entrepreneurship; Essentials of a Successful Entrepreneur Intellectual Property Rights (IPR): Introduction, Types and Management of IPR.		15
Unit II Setting-up of an Enterprise and Planning	Location of Enterprise; Real Estate and Human Resource Planning, Financial Planning; Role of Government and Financial Planning Institutions in Entrepreneurship Development; Raising Money from Venture Capitalists, Government Grants, Product Selection and Ideas; Project Planning and Formulation; Project Feasibility Assessment; Regulatory Affairs, Corporate Laws, Innovation, IPR generation and Protection, Preparation of a Business Plan, Characteristics and Importance of Planning.	2	15
Unit III Marketing, Sales, Advertising and International Market Research.	Marketing Plan for an Entrepreneur; Strategic Alliances, Advertising and Sales Promotion; Market Assessment, Need for International, Domestic vs. International Market research Market Research, Cost and Methodology of Market Research, Desk and Field Research.		15
Internal evaluation	Submission and Presentation of Business Proposal for any Biotechnological Product/Enterprise.		

SEMESTER IV (Practical)

COURSE CODE	TITLE	CREDITS	NOTIONAL HOURS
SIUSBTP48	Practical based on SIUSBT41 and SIUSBT42	2	30 hrs.
1. Gradient Plate	etechnique		
2. Determination	of Cholesterol in Serum.		
3. Organ Function	on Tests: Liver (SGPT, SGOT)); Kidney (Urea from	m Serum).
4. Estimation of	Uric acid and Creatinine in U	rine.	
5. Qualitative De	etection of Ketone Body in Ur	ine.	
6. Isolation of M	litochondria by differential ce	ntrifugation and De	monstration of ETC using a
Marker Enzyr	ne.		
7. Separation of	Chloroplast using Sucrose De	nsity Gradient	
8. Separation of	Binary (Solid-Solid) Mixture	(Min 4 Compounds).
9. Identification	of Organic Compound of Kno	wn Chemical Type	(Min 4 Compounds).
10. Separation of	components from a mixture us	sing Affinity chrom	atography
(Kit may be u	sed)		
11. Separation of	components from a mixture us	sing ion exchange c	hromatography
(Kit may be u	sed)		
12. Separation of	components from a mixture us	sing Size exclusion	chromatography
(Kit may be u	sed)		
13. Chemical and	Biological Synthesis of Silve	r Nanoparticles and	its characterization by UV
Vis Spectroph	otomatar		

COURSE CODE	TITLE	CREDITS	NOTIONAL HOURS		
SIUSBTP49	Practical based on	2	30 hrs.		
	SIUSBT43 and				
4 11	SIUSBT44				
1. Identification	of S.aureus-Isolation, Catalase	e, Coagulase Test.			
2. Identification	of E.coli-Isolation, Sugar Fern	nentations, IMViC.			
3. Identification	of Salmonella- Isolation, Suga	r Fermentations, T	SI Slant.		
4. Identification	of <i>Shigella</i> - Isolation, Sugar F	ermentations, TSI	Slant.		
5. Identification	of Proteus- Isolation, Sugar Fe	ermentations, IMV	C.		
6. Identification	of <i>Pseudomonas</i> - Isolation, U	rease test, Oxidase	Test, TSI Slant.		
7. RPR Test (Kit	Based).				
8. Permanent Sli	de- Mycobacterium.				
9. Biological Ox	ygen Demand (BOD).				
10. Chemical Oxy	gen Demand (COD)				
11. Study of rhize	11. Study of rhizospheric organism by Contact slide method				
12. Study pond ecosystem using Winogradsky's Column					
13. Isolation of Ba	13. Isolation of Bacteria from Air by Gravity Sedimentation Method.				
14. Most Probable	14. Most Probable Number (MPN) – Presumptive, Confirmed and Completed tests.				

COURSE CODE	TITLE	CREDITS	NOTIONAL HOURS		
SIUSBTP50	Practical based on SIUSBT45 and SIUSBT46	2	30 hrs.		
1. Familiarizatio	on with NCBI, EMBL, DDBJ,	PIR, KEGG Databa	ases.		
2. Basic formatti	ing using MS word				
3. Use of MS Ex	cel				
4. Preparation of	f graph using MS excel				
5. Use of power	point				
6. Use of Coral of	draw for posters				
7. Use of NCBI	BLAST Tool.				
8. Pairwise and	Multiple Sequence Alignment	and Phylogeny.			
9. Classification	of Proteins using CATH/SCO	P.			
10. Visualization	PDB Molecules using Rasmol	/Raswin.			
11. Handling and	Calibration of Micropipette.				
12. Isolation and	visualization of Genomic DNA	A by AGE (Bacteria	and Yeast).		
13. Quantitative e	estimation of DNA by DPA me	ethod			
14. Quantitative e	14. Quantitative estimation of RNA by Orcinol method				
15. Problems on I	15. Problems on Restriction Enzyme Digestion				
16. Problems on I	16. Problems on PCR				
17. RFLP- Kit Ba	used.				
18. Primer Design	ning through Open Online Sou	rce NCBI- BLAST			

References

- Ahluwalia, V. K. (2009). Green chemistry: environmentally benign reaction. Ane Books Pvt. Ltd.
- Ahluwalia, V. K., & Aggarwal, R. (2001). Organic synthesis: special techniques. CRC Press.
- 3. Alberts B, Johnson A, Lewis J, et al. Molecular Biology of the Cell. 4th edition. New York: Garland Science; 2002.
- 4. Ananthanarayan, R. (2013). Textbook of microbiology. University Press (India).
- Ananthanarayan, R., & Paniker, C. K. Jayaram. (2009). Textbook of Microbiology. Universities Press (India) Pvt. Ltd. Hyderabad, India. ISBN, 978(81), 7371.
- 6. Arora, P. N., & Malhan, P. K. (2010). Biostatistics (2010 Edition). Himalaya Publishing House.
- 7. Atkins, R. C., & Carey, F. A. (1997). Organic chemistry: a brief course (p. 362). New York: McGraw-Hill.
- 8. Attwood, T. K., & Parry-Smith, D. J. (2003). Introduction to bioinformatics. Prentice Hall.
- 9. Baliga, K., et. al. College Analytical Chemistry, T.Y.B.Sc (Mumbai University). Himalaya Publishing House.
- 10. Baliga, K., et. al. College Analytical Chemistry, T.Y.B.Sc (Mumbai University). Himalaya Publishing House.
- 11. Basotia, G. R., & Sharma, K. K. (1999). Handbook of Entrepreneurship Development: an Entrepreneur's Guide to Planning Starting Developing and Managing a New Enterprise. Mangal Deep Publications.
- 12. Beat, J., Elliott, E., Baur, L., & Keena, V. (2002). Scientific Writing-Easy when you know how. The BMJ Publishing Group.
- 13. Beiser, A. (2003). Concepts of modern physics. Tata McGraw-Hill Education.
- 14. Bruckner, R. (2001). Advanced organic chemistry: reaction mechanisms. Elsevier.
- 15. Buckingham, L. (2007). Flaws. Molecular Diagnostics (Fundamentals, Methods, Clinical Applications), FA Davis Company.
- 16. Carruthers, W., & Coldham, I. (2015). Modern Methods of Organic Synthesis South Asia Edition. Cambridge University Press.
- Casida, L. E., & Casida, L. E. (2005). Industrial microbiology. New Age International (P) Limited Publishers.
- 18. Coleman, W. B., & Tsongalis, G. J. (Eds.). (2006). Molecular diagnostics: for the clinical laboratorian. Springer Science & Business Media.
- 19. Conn, E., & Stumpf, P. (2009). Outlines of biochemistry. John Wiley & Sons.
- 20. Corey, E. J. (1991). The logic of chemical synthesis. John Wiley & Sons.
- 21. Delves, P. J., Martin, S. J., Burton, D. R., & Roitt, I. M. (2017). Essential immunology. John Wiley & Sons.
- 22. Dewick, P. M. (2006). Essentials of organic chemistry: for students of pharmacy, medicinal chemistry and biological chemistry. John Wiley & Sons.
- 23. Dey, S. (2000). Business Communication. Reliable Publications, Mumbai.
- 24. Frobisher Jr, M. (1953). Fundamentals of microbiology. (Edn 5). W. B. Saunders Co.

- 25. Goldsby, R. A., Kindt, T. J., Osborne, B. A., & Kuby, J. (2003). Immunology. 5th. New York: WH Freeman, 23(551), 70.
- 26. Gowariker, V. R., Viswanathan, N. V., & Sreedhar, J. (1986). Polymer science. New Age International.
- 27. Habraken, J. W. (2003). Absolute beginner's guide to networking. Que Publishing.
- 28. Jain, J. L. (2004). Fundamentals of biochemistry. S. Chand.
- 29. Karp, G. (2009). Cell and molecular biology: concepts and experiments. John Wiley & Sons.
- 30. Khopkar, S. M. (1998). Basic concepts of analytical chemistry. New Age International.
- 31. Kobe, K. A. (1957). Unit operations of chemical engineering (McCabe, WL, and Smith, JL). ACS Publications.
- 32. Kothari, C. R. (2004). Research methodology: Methods and techniques. New Age International.
- 33. Kulkarni, S. K. (2015). Nanotechnology: principles and practices (p. 403). Berlin, Germany:Springer.
- 34. Kurup, M.R. (1990). Towards Entrepreneurship. Bombay Kelkar Edu. Trust.
- 35. Lehninger, A. L. (2005). Lehninger Principles of Biochemistry: David L. Nelson, Michael M. Cox. W. H. Freeman.
- 36. Mahajan, B. K. (2002). Methods in biostatistics. Jaypee Brothers Publishers.
- 37. Mendham, J. (2006). Vogel's textbook of quantitative chemical analysis. Pearson Education India.
- 38. Mittal, P., Anand. J. (2007). A Textbook of Sounds. Har Anand Publications.
- 39. Modi, H.A. (2009). Fermentation Technology, Volume-II. Pointer, Jaipur.
- 40. Morisson, R. N., & Boyd, R. N. (1973). Organic Chemistry, Vol. 2. Allyn and Bacon, Inc. Boston, Massachusetts, 73.
- 41. Murray, P. R., Rosenthal, K. S., & Pfaller, M. A. (2015). Medical microbiology. Elsevier Health Sciences.
- 42. NCERT Physics Textbook, Class XII.
- 43. Nelson, D. L., Lehninger, A. L., & Cox, M. M. (2008). Lehninger principles of biochemistry. Macmillan.
- 44. Owen, J. A., Punt, J., & Stranford, S. A. (2013). Kuby immunology (p. 692). New York: WH Freeman.
- 45. Park, T. K., & Talaro, A. (1999). Foundations in Microbiology. McGraw-Hill.
- 46. Patel, A. H. (2007). Industrial microbiology. Macmillan Publishers India
- 47. Patrinos, G., & Ansorge, W. (2009) Molecular Diagnostics. Academic Press.
- 48. Pelczar, M. J., Chan, E. C. S., & Krieg, N. R. (2001). Text book of microbiology. MC Graw-Hill publications, 5th edn, New York, 1193, 504-508.
- 49. Pelczar, M. J., Chan, E. C. S., & Krieg, N. R. (2001). Text book of microbiology. MC Graw-Hill publications, 5th edn, New York, 1193, 504-508.
- 50. Pierce, B. A. (2012). Genetics: A conceptual approach. Macmillan.
- 51. Pillai, S. O. (1994). Solid State Physics: Structure and Electron Related Properties. Wiley Eastern Limited.
- 52. Prieve, D. (2000). Unit Operation of Chemical Engineering. Notes.
- 53. Raghuraman, K., Prabhu, D.V., & Sathe, P.A. Basic Principles in Analytical Chemistry Sem-III & IV(Mumbai University), Sheth Publishers.

- 54. Rajaraman, V., & ADABALA, N. (2014). Fundamentals of computers. PHI Learning Pvt. Ltd.
- 55. Rangan, C. S., Sarma, G. R., & Mani, V. S. V. (1983). Instrumentation: devices and systems. Tata McGraw-Hill.
- 56. Rao, C. V. (2005). Immunology: A textbook. Alpha Science Int'l Ltd.
- 57. Rao, R., et. al. College Organic Chemistry, T.Y.B.Sc (Mumbai University), Himalaya Publishing House.
- 58. Rao, R., et. al. College Organic Chemistry, T.Y.B.Sc (Mumbai University). Himalaya Publishing House.
- 59. Rastogi, S. C., Rastogi, P., & Mendiratta, N. (2008). Bioinformatics Methods and Applications: Genomics Proteomics and Drug Discovery 3Rd Ed. PHI Learning Pvt. Ltd.
- 60. Robertis, D. (1987). Cell and molecular biology. 8th edition. B.I. Waverly, 1995.
- 61. Russell, P. J. (2009). IGenetics-A Molecular Approach. Pearson Education India.
- 62. Russell, P. J., & Gordey, K. (2002). IGenetics (No. QH430 R87). San Francisco: Benjamin Cummings.
- 63. Salle, A. J. (1973). Fundamental principles of bacteriology (Vol. 7). New York: McGraw-Hill.
- 64. Satyanarayan, U., & Chakrapani, U. (2013). Textbook of Biochemistry. Elsevier Health Sciences.
- 65. Satyanarayan, U., & Chakrapani, U. (2013). Textbook of Biochemistry. Elsevier Health Sciences.
- 66. Scragg, A. H. (2005). Environmental biotechnology. New York: OXFORD university press.
- 67. Singh, V. (2011). Handbook of Science Communication. ABD Publishers.
- 68. Skoog, D. A., Holler, F. J., & Crouch, S. R. (2017). Principles of instrumental analysis. Cengage learning.
- 69. Smith, M. B. (2008). Reagents for Organic Synthesis: Collective Index for (Vol. 1). John Wiley & Sons.
- 70. Smith, M. B., & March, J. (2007). March's advanced organic chemistry: reactions, mechanisms, and structure. John Wiley & Sons.
- 71. Srivastava, M.L. (2007). Bioanalytical techniques. Alpha Science International Ltd.
- 72. Stanbury, P. F., Whitaker, A., & Hall, S. J. (2013). Principles of fermentation technology. Elsevier.
- 73. Stanier, Y., Adelberg, E. A., & Ingraham, J. L. (1977). General microbiology. Macmillan India.
- 74. Subrahmanyam, N., Lal, B., & Avadhanulu, M. N. (2015). A Text Book of Optics (me). S. Chand.
- 75. Thakur, I. S. (2011). Environmental biotechnology: basic concepts and applications. New Delhi: IK International.
- 76. Tortora, G. J., Funke, B. R., Case, C. L., & Johnson, T. R. (2007). Microbiology: an introduction (Vol. 9). San Francisco, CA: Benjamin Cummings.
- 77. Upadhyay, A. (2009). Biophysical chemistry. Himalaya Publishing House.
- 78. Upadhyay, A. (2009). Biophysical chemistry. Himalaya Publishing House.
- 79. Verma, H. C. (1992). Concepts of Physics, Vol. I. Bharati Bhawan.

- 80. Verma, H. C. (1999). Concept of physics part 2. Bharati Bhawan.
- 81. Viswanathan, B. (2009). Nano Materials. Alpha Science.
- 82. Voet, D., & Voet, J. G. (2004). Biochemistry. John Wiley & Sons.
- 83. White, A., Handler, P., Smith, E. L., Hill, R. L., & Lehman, I. R. (1978). Principles of Biochemistry. McGraw-Hill Publications.
- 84. Willey, J. M., Sherwood, L., & Woolverton, C. J. (2008). Prescott, Harley, and Klein's microbiology. New York: McGraw-Hill Higher Education.
- 85. Willey, J. M., Sherwood, L., & Woolverton, C. J. (2008). Prescott, Harley, and Klein's Microbiology. New York: McGraw-Hill Higher Education.
- 86. Wilson, K., & Walker, J. (Eds.). (2000). Principles and techniques of practical biochemistry. Cambridge University Press.

EVALUATION SCHEME

The performance of the learner shall be evaluated into TWO Parts.

The learner's performance shall be assessed by Internal Assessment of **40 Marks** and Semester End Examination (theory) of **60 Marks for each term**.

Practical examination will be conducted at end of each semester for **300 Marks**.

The allocation of marks for the Internal Assessment and Semester End Examinations are as follows:-

Internal Assessment – 40 Marks

There will be **two** internal assessment tests:

Sr. No.	Particulars	Marks
1.	Internal Assessment 1	20 Marks
2.	Internal Assessment 2	15 Marks
3.	Active participation	05 Marks

Semester End Examination – 60 Marks

Sr. No.	Particulars	Marks
	All questions are compulsory	
	Number of questions – 4 (Four)	
	Each question carries 15 Marks	
1.	Q1 – Unit I	
	a. Answer in one sentence (any three out of five)	3 Marks
	b. Short notes (any three out of five)	12 Marks
2.	Q2 – Unit II	
	a. Answer in one sentence (any three out of five)	3 Marks
	b. Short notes (any two out of three)	12 Marks
3.	Q3 – Unit III	
	a. Answer in one sentence (any three out of five)	3 Marks
	b. Short notes (any three out of five)	12 Marks
4.	Q4 – Short notes based on Unit I, II and III (any three out of	15 Marks
	five)	
	TOTAL	60 Marks